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1. 

Consider a tapered beam of length l, the width and depth which vary between x= a and
x= b, and whose ends are elastically restrained against rotation and translation and
supported by a continuous elastic foundation. It is assumed that a load q(x) causes a
transverse deflection u(x). The corresponding boundary value problem is given by

d2

dx2 0p(x)
d2u(x)
dx2 1+ r(x)u(x)= q(x), [x$I=(a, b), (1)

r1
du(a)
dx

= p(a)
d2u(a)
dx2 , t1(u)(a)=−

d
dx 0p(a)

d2u(a)
dx2 1, (2, 3)

r2
du(b)
dx

=−p(b)
d2u(b)
dx2 , t2u(b)=

d
dx 0p(b)

d2u(b)
dx2 1, (4, 5)

where p(x) denotes the flexural rigidity, r(x) the foundation modulus, and ri and ti the
rotational and translational stiffness respectively.

In the case 0Q ri Qa, 0Q ti Qa, all the boundary conditions (2)–(5) are unstable [1].
Consequently the space V, of those functions from the Sobolev space H2(I), which satisfy
the corresponding stable homogeneous boundary conditions, can be defined as V=H2(I).
The boundary value problem above is transformed into one that leads to the concept of
weak solution.

Let q(x)$C(I�), r(x)$C(I�), p(x)$C(I�), p'(x)$C(I�), p0(x)$C(I�), p(x)e p0 q 0 and
u(x)$C4(I), be the classical solution of the problem (1)–(5). If one takes an arbitrary
function v$V and multiplies equation (1) by this function and integrates the result over
I one obtains

g
b

a

(p(x)u0(x))0v(x) dx+g
b

a

r(x)u(x)v(x) dx=g
b

a

q(x)v(x) dx. (6)
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Integrating by parts the first term on the left hand side of equation (6) and taking into
account the boundary conditions (2)–(5) one has

g
b

a

p(x)u0(x)v0(x) dx+g
b

a

r(x)u(x)v(x) dx+ r1u'(a)v'(a)+ r2u'(b)v'(b)+ t1u(a)v(a)

+ t2u(b)v(b)=g
b

a

q(x)v(x) dx, [v$V=H2(I). (7)

The first two terms on the left hand side of equation (7) constitute the bilinear form A(v, u)
associated with the differential operator A, which applied to u gives the left hand side of
equation (1). The other terms correspond to the boundary bilinear form a(v, u). Now we
are going to weaken the assumptions. Let p$La(I), q$L2(I), r$La(I), and
B(v, u)=A(v, u)+ a(v, u) continuous in V. The function u is called the weak solution of
the boundary value problem given by equations (1)–(5) if

6u$V=H2(I),
B(v, u)= (v, q)L2(I) [v$V.

(8)

The continuity of the bilinear form A(v, u) follows easily by applying the Schwarz
inequality:

=A(v, u)=Eg
b

a

=p(x)>u0(x)>v0(x)= dx+g
b

a

=r(x)>u(x)>v(x)= dxE >p>La(I)>u0>L2(I)>v0>L2(I)

+ >r>La(I)>u>L2(I)>v>L2(I) EC1>u>H2(I)>v>H2(I). (9)

On the other hand, the bilinear boundary form is given by

a(v, u)= r1u'(a)v'(a)+ r2u'(b)v'(b)+ t1u(a)v(a)+ t2u(b)v(b).

Then one has

=a(v, u)=E r1>u'>La(I)>v'>La(I) + r2>u'>La(I)>v'>La(I) + t1>u>La(I)>v>La(I)

+ t2>u>La(I)>v>La(I).

Since there exists a constant C such that [2] >u>La(I) EC>u>H1(I) [u$H1(I), one has

=a(v, u)=EC(r1>u>H2(I)>v>H2(I) + r2>u>H2(I)>v>H2(I) + t1>u>H2(I)>v>H2(I)

+ t2>u>H2(I)>v>H2(I)). (10)

From equations (9) and (10) it has been proven that B(v, u) is continuous on V, i.e., there
exists a constant C2 such that

=B(v, u)=EC2>v>H2(I)>u>H2(I) [u, v$V=H2(I).

If the bilinear form B(v, u) is also V-elliptic, then the given problem has exactly one weak
solution u [1]. Let us proceed with the proof of the V-ellipticity of B(v, u). Denoting
C3 =min {p0, t1, t2} one has

B(v, v)e p0 g
b

a

v(x)02 dx+ t1v(a)2 + t2v(b)2 eC3$g
b

a

v(x)02 dx+ v(a)2 + v(b)2%.
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By applying Friedrich’s inequality [1],

>u>H2(I) EK$g
b

a

v(x)02 dx+ v(a)2 + v(b)2%,
one has B(v, v)eC3/k>v>2

H2(I), v$V=H2(I); then B(v, u) is V-elliptic.
In the case where all the ri and ti are equal to zero and r(x)$ 0 the properties of B(v, u)

remain valid, but if also r(x)0 0 then B(v, u) is not V-elliptic anymore.

2.         

    

It was proved that the bilinear form B(v, u) is continuous and V-elliptic. Since it is also
symmetric, the function u(x) is the weak solution of equation (8), if and only if it
minimizes, in the space V, the functional [1].

I(v)=B(v, v)−2(v, q)L2(I) [v$V.

So the Ritz method can be applied. Accordingly u(x) is approximated by

un (x)= s
n

i=1

cnivi (x).

where the vi (x) are elements of a base in V.
The coefficient cni are determined by the condition I(un )=min. This procedure leads to

the following system of linear equations:

s
n

j=1

cnjB(vi , vj ) = (vi , q)L2(I), i=1, 2, 3, . . . , n. (11)

It is well known that when using the Ritz method, one chooses a sequence of functions
vi which constitutes a base in the before mentioned space V. Since only the homogeneous
stable boundary conditions are included in V, there is no need to subject the functions vi

to the natural boundary conditions. It is the case when 0Q ri Qa, 0Q ti Qa. If any of
the coefficients ri and ti are equal to 0 or a, stable boundary conditions appear. For
instance, let us consider the problem of deformation of a rectangular cross-section beam
under uniform loading, with the left end (x= a=0) rigidly clamped and the right end
(x= b= l) elastically restrained against rotation. In this case we must define

V= {v$H2(I), v(0)=0, v'(0)=0, v(l)=0}.

If the non-dimensional variable x/l is used and v(x)= (1− x)xi+1, i=1, 2, . . . , is
adopted, one obtains

B(vi , vj )=
ij(i+1)(j+1)

i+ j−1
+

i(i+1)(j+1)(j+2)
i+ j

−
(i+1)(i+2)j(j+1)

i+ j

+
(i+1)(i+2)(j+1)(j+2)

i+ j+1
+ r2,

(vi , q)L2(I) = q0 1
i+2

+
1

i+31.



   562

The solution of system (11) for different values of the rotational coefficient r2 leads to the
numerical values which correspond to the exact solution:

u(x)=
ql4

24EI 0x4 −2
r2 +5
r2 +4

x3 +
r2 +6
r2 +4

x21.
3.   

Let us consider a tapered beam generally restrained when it executes free transverse
vibrations. The eigenvalue problem is given by

d2

dx2 0p(x)
d2u(x)
dx2 1− lu(x)=0, l= rAv2,

r1
du(a)
dx

= p(a)
d2u(a)
dx2 , t1

du(a)
dx

=−
d
dx 0p(a)

d2u(a)
dx2 1,

r2
du(b)
dx

=−p(b)
d2u(b)
dx2 , t2

du(b)
dx

=
d
dx 0p(b)

d2u(b)
dx2 1.

In this case the problem of finding a number l and a function u such that

6u$V, u$ 0,
B(v, u)− l(v, u)L2(I) = 0, [v$V,

(12)

is the eigenvalue problem of the bilinear form B(v, u). If it is symmetric, continuous and
V-elliptic then it has a countable set of eigenvalues given by [1]

l1 =min 6 B(v, v)
(v, v)L2(I)

; v$V, v$ 07,
ln =min 6 B(v, v)

(v, v)L2(I)
; v$V, v$ 0, (v, v1)L2 = · · ·= (v, vn )L2 =07.

Let us introduce a new inner product in space V: ((v, u))=B(v, u) [u, v$V. If the
sequence {vi (x)} is a base in the space V with the inner product ((v, u)), the Ritz method
leads to the equation:

b((v1, v1))− l(v1, v1)L2(I)

((vn , v1))− l(vn , v1)L2(I)

· · · · · · · ·
· · · · · · · ·

((v1, vn ))− l(v1, vn1)L2(I)

((vn , vn ))− l(vn , vn )L2(I) b=0. (13)

Since it was proved that B(v, u) is continuous, V-elliptic and symmetric approximate
eigenvalues can be obtained from equation (13) when dealing with the dynamical
behaviour of the beam considered above. Since the ends are elastically restrained against
rotation and translation, the problems with classical end conditions are particular cases
of the general problem considered here.
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4. 

Differential equations which describe physical phenomena are often obtained from
physical principles by means of the techniques of variational calculus. Certain functionals,
(functional of elastic energy, functional of potential energy, etc.) are minimized. The
necessary conditions for the existence of extremes of these functionals lead to Euler
differential equations. Thus, there is a variational problem, equivalent to the boundary or
eigenvalue problem considered [3, 6]. But the differential equation involves unnecessarily
derivatives of higher order than the order of the derivatives included in the corresponding
functional, which describes a certain type of energy, so it is more natural, from a physical
point of view, to look for the weak solution of the given problem than to look for its
classical solution [4–9]. The weak solution of a boundary or eigenvalue problem may be
obtained under rather natural assumptions by variational methods.

The existence and uniqueness of the weak solutions of a boundary value problem and
an eigenvalue problem, which correspond, respectively, to the statical and dynamical
behaviour of a tapered beam with edges generally restrained has been demonstrated. The
Ritz method has been employed by using polynomials as trial functions.

The use of the weak solution theory enables a substantial generalization of assumptions
concerning, the smoothness of coefficients of the differential equation (1) and the
continuity of the load q. Consequently, problems involving non-uniform beams such as
stepped beams, discontinuous loads, intermediate supports, etc., can be considered.
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